大数据与精准营销
课程背景
2014-2015年,中国的营销者正面临着一个极具挑战的经济时局,金融行业面临大数据的巨大冲击,然而他们也有机会通过撬动海量数据的杠杆来获取巨额收益。2014年中国有8.75亿的互联网用户、在移动电话用户中的渗透率达到67.8%,这就产生了消费、金融、交往、搜索等行为的海量大数据。阿里推出的支付宝等互联网金融产品,还有P2P等新小额贷模式,都对传统金融行业带来了前所未有的挑战。这些挑战的背后,谁先掌控大数据,谁就能获取巨大的经济价值。
在蓬勃发展的中国市场环境中,大数据所带来的机遇前所未有,这将是中国市场的营销者们预期取得大回报的最佳时机。营销者必须知道如何透过数据库的挖掘与分析,让手中的数据与信息发挥最大的价值,通过有效整合、分析线上和线下数据,提高与客户、潜在客户互动的精准度
本讲座通过金融行业和互联网、电信行业的客户分析实际案例,展现数据分析技术在客户营销、企业管理等方面的应用价值,阐述大数据不可阻挡的潮流趋势。
一、互联网时代的“大数据、大机遇”:
1.概述
1)大数据概念和特点
2)大数据需要哪些技术支撑
3)大数据能够带来哪些新应用?
4)互联网时代产生的金融大数据内容
5)大数据如何改写金融行业?
2.大数据时代带来对传统营销的挑战
1)大数据如何成为资产?
2)大数据如何体现精确营销
3)大数据的价值
4)互联网大数据对于金融企业的价值
3.大数据时代的新营销模式
1)互联网的营销模式——微博营销、微信营销、网页营销等
2)CRM——“旧貌焕发新颜”
3)精确营销——装上了GPS,实现“精确打击”
4)金融行业的客户营销——喜好、产品、内容
【示例】淘宝支付宝大数据分析案例分享
4.如何在海量数据中整合线上、线下数据,形成你对消费者的独特洞察力
1)知道客户的各个属性——互联网时代不再“是否是狗”
2)客户的群体特征——“人以群分”
3)如何识别客户欺诈的潜在风险?
5.如何建立全渠道数据平台,拓展营销渠道,提高营销效率
1)客户接触渠道分类
2)电话、QQ、微博——全方位覆盖
3)如果进行广告的精确投放?
4)金融产品营销渠道的拓展
6.大数据的实现架构和体系
1)HADOOP技术了
2)MAP/REDUCE算法
3)非结构化数据分析的特点
4)数据仓库技术
5)数据的ETL过程描述
6)数据挖掘概述
【示例】腾讯“广点通”(精准广告)大数据应用案例
二、大数据下客户的“透视”:
1、客户是“上帝”,如何找到“上帝”?
1)上帝是什么样子?
上帝是什么视图?
2)客户是什么样子?
金融客户是什么视图?有什么样的客户标签?
3)提供哪些产品?
金融产品是什么视图?有什么产品标签?
4)如何建立客户和产品间的关系?
为合适的客户,找到合适的产品
2、我们对自己的客户(“上帝”)了解多少?
1)客户会有什么特点?
客户的基本特征(如:不同产品的年龄分布)
客户的群体特征(如:不同年龄群体关注点有哪些?)
【示例】客户细分模型案例
现代营销模式的基础,以现有产品为基础,寻找群体客户适合的产品和服务。
客户的交往圈子(如:股民圈子关注哪些金融产品?)
【示例】金融行业/电信行业客户交往圈分析案例
客户的内容消费特征(如:客户喜好哪些内容?喜欢那些金融产品?)
基于大数据,换个角度规划产品和服务。
2)大数据时代营销的方法
营销方法论和知识库(分析问题的知识库和方法树)
互联网时代的营销:“大数据、微营销”(细节营销)
营销的渠道规划:实时营销和事件营销
【示例】美剧《纸牌屋》的大数据营销;
3)企业管理方面的情况
及时发现企业真实的情况(哪些运营的关键指标KPI?)
像人体一样,如何及时发现病症?(关键指标KPI的波动范围?)
【示例】:电信企业的数码仪表盘,展示企业的KPI;如何通过手机彩信及时展现KPI给领导。
【示例】百度大数据产品(司南、精算、预测等)应用介绍
3、如何“帮客户买产品,而不是推销其不需要的产品”
1)如何进行客户的“X光透视”?
(客户的统一视图包含哪些信息?哪些是关键属性?)
如何发现客户的真实需求?(服务与骚扰的区别)
【示例】:金融行业客户的内容标签展示
2)内部产品的科学选配
(如何提供专家般量化的分析,为用户提供最优的内部产品?
如:金融行业计算出最适合用户模式的理财产品进行选择)
【示例】:为客户定制最合适的资费:经过数据精算后,告诉客户,A产品比B产品更适合张三。
3)竞争对手产品的对比
与竞争对手间的产品差异化区隔
自己产品的优势和弱点(如何提供量化的分析结果?)
【示例】:竞争对手的“客户回归”分析案例
4)销售过程的处理
销售时机的把握销售语术的把握
4、大数据营销的作用和价值
1)数据和知识是人的本质特征
2)大脑是人与动物的差别
3)“事半功倍”是捷径
4)从“拼刺刀”到“信息战”;
【示例】:某人关系图
5、金融行业如何识别欺诈客户
1)客户的行为和内容数据
2)欺诈客户的行为特点
3)欺诈客户数据挖掘模型
4)发洗钱识别模型
5)实时识别、实时预防
【示例】金融行业欺诈客户识别案例(基于客户行为数据分析)
6、客户的征信模型
1)客户征信的内容
2)客户征信应用领域
3)央行与阿里的客户征信差异
4)客户征信计算模型
【示例】阿里的蚂蚁信用分案例
三、基础数据的收集和分析
1、数据的种类
1)客户数据内容(金融客户的基本资料)
2)产品数据内容(产品的编码)
3)营销数据内容(交易记录的保存)
4)服务数据内容(客户服务数据的保存)
5)金融数据的特点:(交易型数据少、价值密度高等)
2、数据的存放方法
1)数据的清洗、转换和加载
2)存放在数据库/数据仓库
3)数据的基本分析工具EXCEL等
4)数据仓库的基本原理
5)HADOOP数据中心的基本原理
3、数据的基本整理
1)数据的归类存放(建模型)
2)数据的基本加工
4、数据挖掘技术
1)数据的基本汇总
2)数据中的“金子”:从石头中淘金子
3)数据挖掘:“啤酒和尿布”的故事
4)数据挖掘过程
5)数据挖掘算法介绍
包括:关联分析、聚类分析、决策树分析、孤立点分析等算法
【示例】:客户挽留案例剖析(数据挖掘中分类算法)
6)高级的数据挖掘工具SAS和SPSS等
【示例】:通过SAS工具识别客户欺诈案例
5、数据质量的基本保障
1)指标的口径描述和统一
2)后期补数据成本是前提收集数据成本的15倍
3)“差之毫厘谬以千里”
6、数据的安全管控
1)4A权限管控
2)数据的加密等多种技术
3)系统的“城防图”:
【示例】:某企业的数据仓库安全案例
四、客户的分析/认知
1、客户的定义和范畴
用户和客户的区别客户是否要进行细分,如校园客户、家庭客户、集团客户、小微企业客户等
2、关于客户的基本“信息”(管中窥豹)
身份证信息行为爱好信息衍生信息
客户资料信息透露的内容分析
【示例】客户基本信息分析示例
3、客户的基本属性标签(如对儿童家庭投放儿童保险产品等)
增值服务等方面,让服务更加贴近客户
如何爬取客户的内容信息
【示例】互联网客户“内容爬取”示例
4、客户的喜好(“不怕没缺点,就怕没爱好”)
经常出没的地方(高尔夫场、酒吧街、电影院等)
通过前台的观察和后台的询问等获取的知识
【示例】通过网页浏览内容分析,获取用户的内容信息
5、客户的细化分群
客户分群的依据(物以类聚、人以群分)
数据挖掘技术应用客户分群的方法:
【示例】:淘宝客户分群案例
6、客户的知识库
实时调出符合条件的客户群体来
【示例】:金融/电信行业客户知识库举例
7、客户的“交叉营销”
如何识别家庭客户/集团客户?
如何针对家庭客户/集团客户进行营销?
【示例】:保险行业家庭客户交叉营销案例
8、客户的“再挖掘”(UPSELL/CROSSSELL)
客户群中的“种子/关键”客户客户的交往圈分析
基于客户交往圈,进行客户“再挖掘”
【示例】:客户交往圈中“关键客户”识别案例
9、客户的生命周期管理
客户的生命周期数据分析渗透到客户的生命周期全过程
【示例】客户生命周期中数据挖掘应用展示
10、客户的实时欺诈监控
客户的信誉打分;
实时分析设计与实现;
【示例】:基于客户行为的实时监控分析
五、金融产品的分析/认知
1、产品的定义和范畴
金融产品、保险产品、理财产品、股票产品等
2、关于产品的基本“信息”
产品的使用客户特征分析
产品的关联特征分析
【示例】产品关联分析案例
3、产品的基本属性标签
产品基本内容
产品增值内容
【示例】增值产品的潜在客户分析案例
4、竞争对手的竞品分析
竞争对手的同类产品分析
竞品产品量化对比分析
【示例】为客户定制“产品”
5、产品的潜在客户分析
产品潜在用户的特征分析
【示例】:“猜你喜欢”案例介绍
6、产品的“交叉营销”
如何识别客户喜好的产品?
如何进行客户交叉营销?
【示例】:金融行业产品交叉营销案例(金融的啤酒和尿布)
7、产品的升级、改造
产品改进数据获取
产品改进创新设计
【示例】小米手机的大数据营销案例
六、如何为合适的用户提供合适的产品?
1、营销的目的:为合适的用户提供合适的产品
除了“激情营销”,更需要“理性营销”;
真正满足客户需求才能构建长久的营销关系;
客户的真实需求如何?
2、如何发现合适的用户
谁是合适的客户?标准有哪些?客户的担心、顾虑是什么?
3、如何提供合适的产品
从现有的产品客户中寻找目标客户特征
【示例】:电信行业客户“手机阅读报”针对性营销案例示例
4、营销案的设计和评估
如何吸引用户?如何让用户选择产品?
营销与广告的差异;
营销案的设计(吸引眼球);
营销案的评估
5、营销的过程和细节
类似CRM系统的营销流程管理
营销活动的实时性提升
【示例】:某餐饮行业CRM营销案例
6、营销的渠道选择
客户是否喜欢外呼电话,还是短信?还是网上营业厅?
【示例】:用户偏好渠道分析的案例
7、如何避免对客户的过渡打扰
限制每月的外呼次数;
通过网站等渠道进行营销和广告;
8、客户的挽留和延伸销售
识别真正有价值的客户;
【示例】:客户价值评估介绍
尽量让客户进入更高级别,避免降级:(行业的价格战,将钻石卡用户打成了金卡;金卡用户打成了银卡
七、企业的“智慧运营”
1、企业量化管理概述:
企业的量化指标;
企业的量化管理内容;
【示例】企业基于GIS信息的网格指标监控
2、企业成本分析:
成本数据获取;
成本分析内容;
【示例】某企业人工成本分析案例
3、企业价值链管控分析
企业上下游企业分析;
【示例】某企业渠道欺诈分析;
4、企业的异常运营控制
异常KPI指标的及时告警;
异常的基本影响因素分析
【示例】某企业KPI异常监控和分析案例
5、金融企业的风险控制
互联网舆情监控;
客户(企业)的360度大数据收集;
客户(企业)的360度风险评估;
【示例】企业风险评估案例
6、网贷平台的P2P风险评估
P2P的冲击和挑战;
P2P的风险评估数据及方法;
【示例】P2P风险评估案例
八、如何编写漂亮的分析报告(既有漂亮里子,也要有漂亮面子)
1、数据是基础
2、分析报告是展现形式
3、分析报告的思路
4、分析报告的方法
示例:分析报告演示
九、数据的质量问题
(数据仓库项目的60%精力是在解决数据质量问题)
1、数据质量的问题表现
接通率的量化依据数据转换成为成功订单几率的描述
示例:数据质量的问题分布图
2、数据质量的根源在哪里
业务管理的标准化指标的口径一致性问题
3、数据质量的管理模式
理清数据的来龙去脉列出数据的监控点
4、数据质量的量化评估方法
数据质量的评估标准
【示例】:数据质量的评估指标
大数据与精准营销